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MAMMOTH and Rattlesnake
Overview



MAMMOTH and Rattlesnake Team

• Mark DeHart
– Mark.DeHart@inl.gov

• Yaqi Wang (Developer)
– Yaqi.Wang@inl.gov

• Frederick Gleicher (Developer/Analyst)
– Frederick.Gleicher@inl.gov

• Javier Ortensi (Developer/Analyst)
– Javier.Ortensi@inl.gov

• Sebastian Schunert (Developer)
– Sebastian.Schunert@inl.gov

• Benjamin Baker (Analyst)
– Benjamin.Baker@inl.gov
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What is MAMMOTH?

• a MOOSE-based reactor physics application
• seeks to perform large scale integrated reactor multi-physics calculations

on matching and non-matching geometric domains,
• built on MOOSE and inherits all the MOOSE finite element functionality,
• enables a variety of multi-physics coupling schemes (loose, tight and

strong)
• able to leverage different MOOSE applications to perform large scale

reactor simulations,
• being developed as a general and flexible environment to perform reactor

physics analysis to support the following engineering applications:
– core safety (ATR, TREAT, etc.)
– transient and experiment design (TREAT),
– core management (depletion and optimization),
– fuel performance,
– advanced reactor concepts (ARC) support,
– structural Integrity,
– spent fuel criticality and decay heat analysis
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What’s inside MAMMOTH?

The MAMMOTH executable is linked to
the following MOOSE applications:
• Rattlesnake: radiation transport
• Yak *: radiation transport module
• BISON : fuel performance
• Relap-7 : thermal hydraulics
• Raven : reactor system and safety

analysis
• Marmot : micro-structure evolution
• Thermo-chimica : chemistry
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What is Rattlesnake?

• a MOOSE-based high-fidelity radiation transport application
• solves the linearized Boltzmann transport equation
• solvers and spatial discretizations:

– CFEM: diffusion, self-adjoint angular flux (SAAF), least squares (LS)
– DGFEM: diffusion, 1st order

• angular discretizations:
– spherical harmonics (PN )
– discrete ordinates (SN )

• arbitrary number of energy groups
• arbitrary anisotropic scattering order
• void treatment in the SAAF (2nd order) formulation
• the method of manufactured solutions is built into the transport framework
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Current MAMMOTH and Rattlesnake Capabilities

• Forward and adjoint eigenvalue problems
• Transient problems with various time integrators including the improved

quasi static (IQS)
• Criticality search
• Macroscopic depletion
• Decay Heat (ANS standard based on local burnup)
• Computation of PKE parameters during transients
• Fluence determination for reactor internals and RPV (SN solver)
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Future MAMMOTH and Rattlesnake Capabilities

• Microscopic depletion
• Improved decay heat (based on local heating from all isotopes)
• Multi-scale capabilities
• Customizable nuclide inventory
• Gamma transport
• Integrated cross section generation
• Multi-cycle and equilibrium cycle analysis (reshuffling)
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LWR Analysis - 2-D Core Assembly-Wise Eigenvalue

• IAEA-2D benchmark
• Standard PWR reactor
• 2 energy groups
• Rattlesnake model:

– cross sections from the benchmark
– assembly homogenized
– 241 elements, quadratic shape

functions
– run-time is < 1 second

• Eigenvalue 1.029696

• Red: fuel assembly with control rods
• Green: fuel
• Cyon: fuel
• Blue: reflector

Fast flux Thermal flux 10 / 104



LWR Analysis - 3-D Core Pin-Cell-Wise Eigenvalue

• Standard PWR reactor
• Start-up core (Cycle 1)
• Rattlesnake model

– cross sections from DRAGON5
– 3-D full core mesh
– pin-cell homogenized
– 8 energy groups
– SPH corrected CFEM diffusion
– 68 million DoFs
– 35 minutes on 480 CPUs

• Eigenvalues
– MIT - 0.99920 (OpenMC)
– INL - 0.99994

INL error in detector fission rates MIT error in detector fission rates
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LWR Analysis - Transient

• LRA-2D benchmark (14-A1)
• BWR model
• super prompt-critical transient
• 2 energy groups
• 2 delayed neutron groups
• diffusion
• adiabatic heat-up
• assembly homogenized cross

sections with Doppler
feedback

Initial k-effective 0.996368
k-effective with the control rod completely out 1.015445
The first averaged peak power (W/cm3) 5455.46
The occurrence of the first peak (s) 1.44112
The second normalized peak power (W/cm3) 795.498
The occurrence of the second peak (s) 2.00164
Averaged power density at 0.4s (W/cm3) 1.38437× 10−6

Averaged power density at 0.8s (W/cm3) 3.07545× 10−6

Averaged power density at 1.2s (W/cm3) 6.67668× 10−6

Averaged power density at 1.4s (W/cm3) 432.518
Averaged power density at 2.0s (W/cm3) 795.126
Averaged power density at 3.0s (W/cm3) 98.4276
Averaged fuel temperature at 3.0s (K) 1094.15
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HTR Analysis

• OECD/NEA MHTGR-350 Benchmark
• Rattlesnake model

– cross sections from DRAGON5
– 3-D 1/3rd core mesh
– block homogenized
– Triangular mesh
– 26 energy groups
– 26 million DoFs

• Eigenvalues
– Mean value - 1.06743 ± 92 pcm
– Rattlesnake - 1.06692

• VHTRC Benchmark
• Rattlesnake model

– cross sections HELIOS/SERPENT
– 3-D full core mesh
– 1/3rd block homog. and pin resolved
– 26 energy groups
– 0.13 and 40 million DoFs

• Eigenvalues
– Benchmark - 1.01100
– Rattlesnake - 1.02036

(ENDF/B-VII.r0)
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Test Reactor Analysis - ATR

• The mesh is 3D with two lobes of ATR:
(The entire ATR core contains 40 lobes.)

There are 81,004 elements of mixed
types.

• The 12-group cross sections with P5
scattering was obtained from Serpent.

• The 12-th group flux:
P5 and no refinement

Sn
order k-eff

6 1.1746762
8 1.1745569

12 1.1745146

• k-effective results:
S8 and no refinement
Scattering

order k-eff
0 1.2772911
1 1.1719575
2 1.1746945
3 1.1745509
4 1.1745562
5 1.1745569

Diffusion and no refinement
Order Refine k-eff

1 0 1.2471145
1 1 1.2476926
1 2 1.2486009
2 0 1.2481176
2 1 1.2489132

• S12-P3 is a good combination. Mesh
needs to be refined. We can use AMR to
generate a better mesh. 14 / 104



Test Reactor Analysis - TREAT

• Rattlesnake model
– cross sections from SERPENT
– 3-D full core mesh
– block homog. or explicit channels
– mixed quad and wedge elements
– 11 energy groups
– million DoFs

• Minimum Critical Eigenvalue
– Rattlesnake - 1.00575
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Pin coupling

• Rattlesnake model
– cross sections from SERPENT
– 3-D full meshed pellets
– void gaps and water region explicitly meshed
– 20 radial regions to capture plutonium rim

effect
– depleted at a constant power level for a year
– explicit dishing and chamfering

• BISON model
– Fuel and cladding
– UO2 thermo-material properties internal to

BISON

Rattlesnake and BISON mesh

Parameter Value
Fuel Pellet Radius 4.09575 mm

Fuel Pin Initial Temperature 600 (K)
Outer Cladding Thickness 0.5715 (mm)

Initial Gap Thickness 0.08255 (mm)
UO2 4.45 wt %

Cladding Initial Tempareture 600 (K)
Water Temperature 585 (K)

Pitch 12.5984 (mm)
Linear Heat Rate 19.2 Wm

Power Density and Fuel Temperature profile at
350 EFPF.
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Getting Started



Access to MAMMOTH

• MAMMOTH, Rattlesnake, Yak, Bison, Relap-7, and Pronghorn are hosted
on an INL internal gitlab server.

• Moose is hosted on github and is publicly available.
• You must meet requirements to access these codes (no exceptions):

– You must work for INL or your organization must have a license agreement with
INL.

– INL HPC account: If you work for INL, you can request an account. If you do
not work for INL, you have to have a sponsor inside INL.

• Rattlesnake, Yak, Bison, Relap-7, and Pronghorn are available through
MAMMOTH if access is available.

• Process to obtain access to MAMMOTH:
1. (Foreign nationals only) All apps that your request have to be added to your

security plan.
2. You have to apply for an HPC account.
3. The developers have to add your as a member to access the project (the

”animal”) on gitlab. You need to be a member of each application that you will
use!
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Getting Started-I

• If you are within the INL domain you can access the INL gitlab server here:
https://hpcgitlab.inl.gov

• If you are not connected to the INL domain:
– Set up a SOCKS proxy with localhost set to 5555.
– Connect to INL HPC.

ssh -D 5555 username@hpclogin.inl.gov

• Login with HPC username and password.

• In your projects page you will see a
list of ”animals” that you can
access.

• If you cannot find the
idaholab/animal you are looking for
in the list, you do not have access
granted.

• Select idaholab/mammoth.
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Getting Started-II

• A ”fork” is a copy of a repository. Forking a repository allows you to freely
experiment with changes without affecting the original project.

• From the application menu click on the ”Fork” button.

• The new page should indicate ”Forked from idaholab.”
• Copy the SSH URL.
• More information here: https://mooseframework.org/static/
media/uploads/docs/moose_gitlab.pdf
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Getting Started-III

1. For local installations follow the link in the MOOSE wiki page of your
platform to install the redistributable packages.

2. Change directory into projects and use git to clone the code into ∼/projects
by pasting the SSH URL.

>cd ∼/projects
>git clone git@hpcgitlab.inl.gov:USERNAME/mammoth.git

3. Initialize the submodules that you will need and build libMesh.

>cd ∼/projects/mammoth
>git submodule update --init -- ./moose/
>git submodule update --init -- ./rattlesnake/
>git submodule update --init -- ./yak/
... initialize other submodules as necessary (i.e. bison, pronghorn, relap-7)

4. The submodule update might fail with the following error message ”SSL
certificate problem: Invalid certificate chain”. In this case do the following:

>cd .git
>Open config in your text editor of choice.
>Replace "url = https://hpcgitlab.inl.gov/idaholab/mammoth.git"
by
"url = git@hpcgitlab.inl.gov:idaholab/mammoth.git"
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Getting Started-IV

5. Build libMesh.

>cd ∼/projects/mammoth/moose/scripts
>./update_and_rebuild_libmesh

6. Build MAMMOTH.

>cd ∼/projects/mammoth
>make -j8 (Add -j8 to compile using 8 processors.)

7. Run the regression tests to verify that MAMMOTH was build correctly.

>./run_tests -j8

8. Run the regression tests for all compiled applications with:

>git submodule foreach ’make -j8 test’ (FIX ME SEBASTIAN)

9. Done.
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Keeping the Applications up to Date

1. Update MAMMOTH

>git pull --rebase upstream devel

2. Update the submodules

>git submodule update

3. Compile

>make -j8 (Add -j8 to compile using 8 processors.)

If libmesh has been updated or significant changes have occurred, you might
need to clean all applications before building:

>make cleanall
>make -j8 (Add -j8 to compile using 8 processors.)
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Building Models



Building Models - Overview

There are three general items needed for a MAMMOTH or Rattlesnake
simulation
• Mesh(s)

– some MOOSE applications might require independent meshes
– this will require the projection of the solution space
– try to keep the mesh as consistent as possible to minimize interpolation errors
– for large # of cross section regions use a material ID variable in the mesh

• Cross sections
– these can originate from any source, but need to be converted to our internal

format
– we provide a basic converter for Serpent, that will be expanded to other codes
– we plan to add some limited cross section generation capability in the future

• Input file(s)
– some multiphysics problems might require separate input files for each MOOSE

application
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Generating a Mesh



Meshing - Tools Available

• MOOSE and MAMMOTH based - INTERNAL
– provide build-in generators for regular Cartesian and Hexagonal geometries

• INSTANT Mesh Generator - INTERNAL
– A seperate nodal neutronics package (INSTANT) contributes to Yak.
– Included in rattlesnake/contrib/instant
– Provides a few more geometries like LWR, and PSLG (Planar Straight Line

Graph). See INSTANT documentation for more details.
– INSTANT also provides a mesh utility that analyzes the mesh for hanging nodes

or separated domains.
• CUBIT - EXTERNAL

– U.S. contractors or government facilities have access to CUBIT
– U.S. universities can obtain university licenses
– some of our python scripts will be included in mammoth/contrib/mesher

• Other EXTERNAL (MeshKit, Gmsh, etc.)
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Cartesian Mesh

• Extensions of MOOSE’s GeneratedMesh
• GeneratedBIDMesh - has fixed element sides
• CartesianMesh - allows flexible element sides
• Includes a subdomain parameter, which allows to assign a block

(subdomain) ID to each mesh cell.

[Mesh]
type = GeneratedBIDMesh
dim = 2
xmin = 0
xmax = 80
ymin = 0
ymax = 80
elem_type = QUAD9
nx = 10
ny = 10
subdomain=’1 1 1 2 2 2 2 1 1 1

1 1 1 2 2 2 2 1 1 1
1 1 1 2 2 2 2 1 1 1
2 2 2 3 3 3 3 1 1 1
2 2 2 3 3 3 3 1 1 1
2 2 2 3 3 3 3 1 1 1
2 2 2 3 3 3 3 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1’

uniform_refine = 0
[]
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Prismatic Mesh - 1/3 Core

[Mesh]
type=PrismaticReactorMeshThird
material_map_file = m3.dat
generated_mesh_filename = ’Hex_3.e’
mesh_pattern = SIMPLE
rotation = 60
fuel_assembly_pitch = .36
delta_z = ’4’
axial_divisions = ’4’
left = 1
right = 2
outer = 3
bottom = 4
top = 5

[]

Contents of m3.dat
75 76 77 78 79 80 81 82 83
59 60 61 62 63 64 65 66 84
45 46 47 48 49 50 51 67 85
33 34 35 36 37 38 52 68 86
23 24 25 26 27 39 53 69 87
15 16 17 18 28 40 54 70 88

9 10 11 19 29 41 55 71 89
5 6 12 20 30 42 56 72 90
3 7 13 21 31 43 57 73 91

1 2 4 8 14 22 32 44 58 74

• Builds 1/3 core geometry based on
material map file.

• Stack maps in material map file to
assign SubdomainID to various
layers.
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Prismatic Mesh - 1/6 Core

[Mesh]
type=PrismaticReactorMeshSixth
material_map_file = m6.dat
generated_mesh_filename = ’Hex_6.e’
mesh_pattern = SIMPLE
rotation = 30
fuel_assembly_pitch = .36
delta_z = ’4’
axial_divisions = ’4’
left = 1
right = 2
outer = 3
bottom = 4
top = 5

[]

Contents of m6.dat
1 2 4 8 14 22 32 44 58 74
3 7 13 21 31 43 57 73 91
6 12 20 30 42 56 72 90

12 20 30 42 56 72 90
19 29 41 55 71 89
28 40 54 70 88
39 53 69 87
52 68 86
67 85
84

• Builds 1/6 core geometry based on
material map file.
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Prismatic Mesh - 1/12 Core

[Mesh]
type=PrismaticReactorMeshTwelfth
material_map_file = m12.dat
generated_mesh_filename = ’Hex_12.e’
mesh_pattern = SIMPLE
rotation = 30
fuel_assembly_pitch = .36
delta_z = ’4’
axial_divisions = ’4’
left = 1
right = 2
outer = 3
bottom = 4
top = 5

[]

Contents of m12.dat
1 2 4 8 14 22 32 44 58 74

7 13 21 31 43 57 73 91
20 30 42 56 72 90

42 56 72 90
71 89

• Builds 1/12 core geometry based
on material map file.
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Prismatic Mesh - Burnable Poisons and Control Rods

• Control Rods can be added with
the following additional entries.

• Here subID 31 in m12.dat is
replaced by a list of 6 new
materials for CRs.

[Mesh]
.

control_rod_block= ’31’
control_rod_map= ’1 2 3 4 5 6’
[]

• BP regions can be added with the
following additional entries

• Here subID 31 in m12.dat is
replaced by a list of 7 new
materials for BPs.

[Mesh]
.
burnable_poison_block = ’31’
burnable_poison_map = ’1 2 3 4 5 6 7’

[]
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Meshing - Exercise ms 1

This exercise teaches the student how to build a
mesh with GeneratedBIDMesh.
• use the sample input block provided→
• type is GeneratedBIDMesh

• build a 2-D mesh with:

– dimensions x [0,100] y [0,50]
– with interval x 10 and y 5
– element type QUAD4

• note that the mesh is in centimeters

[Mesh]
type =
dim =
xmin =
xmax =
ymin =
ymax =
nx =
ny =
elem_type =
subdomain=’1 1 1 1 1 1 1 1 1 3

1 1 1 1 1 1 1 1 1 3
1 1 1 1 1 1 1 1 2 3
1 1 1 1 1 1 1 2 2 3
3 3 3 3 3 3 3 3 3 3’

uniform_refine = 0
[]
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Meshing - Checking your Mesh

• Often times convergence or solution shape problems are due to the mesh
• Using the INSTANT mesh checker

# to compile INSTANT and the mesh checker
∼/projects/mammoth/rattlesnake>make instant -j8

# to execute the mesh checker under rattlesnake
∼/projects/mammoth/rattlesnake/contrib/instant/instant_mesh_generator-opt inp.xml

# see the INSTANT manual for details on how to prepare the input file in
∼/projects/mammoth/rattlesnake/contrib/instant/doc/manual.pdf

• Use the Debug block in MOOSE with:

[Debug]
check_boundary_coverage = 1
print_block_volume = 1

[]
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Data Preparation



MAMMOTH

• A multi-group reactor physics database includes among other items these
basic datasets:

– neutron and gamma cross sections (cross sections, diffusion coefficients,
velocities)

– delayed neutron (delayed neutron fractions and spectrum)
– depletion data (decay constants, branching ratios, Q values, other decay chain

information)
• Present state and Future Development

– MAMMOTH and Rattlesnake support both INSTANT and YAKXS formats (both
internal INL formats) for cross sections and delayed neutron data.

– We are working on our decay and reaction library formats.
– Preliminary capability to convert SERPENT to YAKXS and INSTANT format is

available.
– Support planned for the following external neutron cross section formats:

DRAGON-5, SERPENT (branch), OpenMC and AMPX.
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YAKXS

• YAKXS (Yak cross section library) is a modern XML (eXtendable Markup
Language) multigroup cross section library format.

• Cross section processing functions, including interpolation, mixing, etc., are
provided along with the library format.

• It is designed to provide a general tool for radiation transport calculations
but not limited to be used only by Yak.

• The source files are located under rattlesnake/contrib/yakxs.
• The main source file is yakxs.C, which defines the MultigroupLibrary,

MixingTable and Mixture.
• A separate document for YAKXS can be found under

rattlesnake/contrib/yakxs/doc.
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YAKXS Graphical View
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YAKXS - Parametric Micro/Macroscopic Cross Sections
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Preparing the Input



MAMMOTH versus Rattlesnake Recap

• Rattlesnake solves the multigroup neutron transport equation
– forward and adjoint eigenvalue
– steady state source problem
– time dependent with precursor equations (0-D PKE and 3-D spatial kinetics)

• Rattlesnake can also solve the radiative transfer equation (RTE) (but not
covered in this traning)

• MAMMOTH controls the execution of various calculations needed in
multiphysics simulations

– perform upper level computations that require multiple solution spaces (e.g.
depletion, feedback, SPH correction, optimization)

– calls Rattlesnake to obtain flux solutions (e.g. eigenvalue calculation)
– can call BISON, Relap-7 or Pronghorn to obtain thermal and fluid fields
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The Transport Systems



Multigroup Neutron Transport Equation
The neutron transport physics can be modeled with the multigroup neutron transport equation:

1

vg

∂

∂t
Ψg (~r, ~Ω, t) + ~Ω · ~∇Ψg + σt,g (~r)Ψg = Sext,g (~r, ~Ω, t) +

χp,g (~r)

4π

G∑
g′=1

νpσf ,g′ (~r)

∫
4π

Ψg′ (Ω′)dΩ′ +

1

4π

I∑
d=1

χd,g (~r)λd Cd (~r, t) +
G∑

g′=1

σs,g′ (~r)

∫
4π

pg′→g (~r, ~Ω′ · ~Ω)Ψg′ (Ω′)dΩ′, g = 1, · · · ,G.

• g - group index. p, d - prompt, delayed. G - number of energy groups. I - number of delayed
neutron groups.

• independent variables: t - time;~r - position; ~Ω - streaming direction.
• Ψg : angular group flux in group g (the primary variable!) .
• Cd : neutron precursor concentration.
• vg , σt,g , χg , ν, σf ,g , σs,g : group averaged neutron speed, total cross section, fission spectrum,

fission yield, fission cross section, scattering cross section.
• pg′→g(~r , ~Ω′ · ~Ω): scattering kernel.
• Sext,g : external source.
• Notes:

– fission and fission-related delayed neutron production are special for neutron transport;
– the equations for delayed neutron precursors are not given here;
– boundary conditions on the incoming angular fluxes are required.
– because of the fission production with (ν > 1), neutron population of a system can be sustained without

external source;
– scattering can be treated with spherical harmonics expansion with relatively a low scattering order for

neutron transport;
– multiphysics feedback on neutron distribution are in place through those cross sections; 43 / 104



Choosing the Discretization Schemes

• The multigroup neutron transport equation must be discretized to be solved numerically.

• FEM (finite element methods) are used exclusively for spatial discretization; SN (discrete
ordinates method) or PN (spherical harmonics expansion method) are used for angular
discretization (Diffusion can be thought as a special case of PN ); Method of lines is applied to
time, i.e. time integration schemes are independent on neutron transport and any of them can be
used.

• Currently supported schemes by Rattlesnake:

Mathematical Thermal
Scheme adjoint Neutron radiation Transient Multiscale

CFEM-Diffusion Y Y Y Y Y
DFEM-Diffusion N Y N Y N

SAAF-CFEM-SN Y Y Y Y Y
SAAF-CFEM-PN N Y N Y Y

LS-CFEM-SN N Y N Y N
LS-CFEM-PN N N N N N

DFEM-SN Y Y N Y N
DFEM-PN N N Y N N
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Angular Discretization Methods in Rattlesnake

• Discrete ordinates (SN )
– Transport equation solved along discrete streaming directions.
– The directions in the streaming term are decoupled.
– The computing effort is increased about linearly with the

increased number of streaming directions.
– Accuracy depends on order and type of angular quadrature.

• Level symmetric (maintains symmetry - cheap since less
unknowns)

• Gauss-Chebyshev (allows specification of polar and
azimuthal directions)

• Bickley3-Optimized (production quadrature for 2D)
– Prone to ray effects (or solution singularities).

• Spherical harmonics expansion (PN )
– Directional dependence approximated by series of spherical

harmonics functions.
– Unknowns are the directional expansion coefficient or angular

moments.
– Streaming term couples all angular moments.

Yl,m≥0(~Ω) ≡

√√√√ (l − m)!

(l + m)!
(2 − δm,0)Pm

l (µ) cos(mθ)

Yl,m<0(~Ω) ≡

√√√√2
(l − |m|)!

(l + |m|)!
)P|m|l (µ) sin(|m| θ)

• SN is typically more suitable for heterogeneous calculations, while PN is
mainly for problems with the significant spatial homogenization.
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FEM for Spatial Discretization in Rattlesnake

• Continuous FEM
– stabilization scheme needs to be applied for hyperbolic system like the neutron

transport equation
– pros most of existing mesh frameworks support directly; AMG (algebraic

multi-grid method) can be used.
– cons having requirements on the mesh quality.
– cons memory intensive because of storing the preconditioning matrix.
– cons lack of local conservation.
– cons high-order expansion functions are expensive.

• Discontinuous FEM
– simple upwind scheme
– DFEM can be solved with the transport sweep
– pros highly memory efficient with the matrix-free scheme;
– cons difficulties associated with transport sweep: massive parallelization,

unstructured mesh, etc.

• Rattlesnake currently does not have a good transport sweeper. So for large
size applications you will want to choose CFEM.
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The Input Syntax of Transport Systems - Overview

[TransportSystems]
particle = neutron
equation_type = eigenvalue
G = 8
VacuumBoundary =’bottom top’
ReflectingBoundary =’right left’

[./saaf]
scheme = SAAF-CFEM-SN
block = ’1 2’
family = LAGRANGE
order = FIRST
AQtype = Gauss-Chebyshev
NAzmthl= 2
NPolar = 3
NA = 2

[../]
[]

• Allows users to specify:

– transport equation to solve
– discretization scheme
– spatial domain where transport

equation is solved
– spatial functional space
– angular discretization
– angular discretization settings
– scattering order (number of anisotropy)
– and etc...

• Multiscale can be easily turned on by
providing multiple block-restricted
discretization sub-blocks.
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Neutronics Materials



Neutronics Materials - Overview

• It declares and evaluates material properties (cross sections) required by
neutronics computations for both diffusion and transport, steady-state and
transient.

• Types of material (Rattlesnake user manual contains full list):
– Constant - specifies a constant set of macroscopic cross sections
– Mixed - creates a fixed set of macroscopic cross sections by interpolating and

mixing from a tabulated cross section set
– CoupledFeedback - similar to Mixed, but with on-the-fly interpolation and

mixing from a tabulated cross section set
– Function - all macroscopic cross sections can be a function varying in space

and time. Suitable for doing MMS or some complicated spatial kinetics
benchmark calculations

– CRodded - to model control rod movement within a block

• Volume correction of cross sections is available if the meshed volume is
different from the ’real’ volume.

• We will discuss two materials: 1) Constant and 2) CoupledFeedback.
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Neutronics Materials - Assigning cross sections

1. Using the block number
– simplest XS assignment
– uses the ’block’ parameter to match 1

block # to 1 XS ID in library.
– used for a small # of XS regions.
– can be automated using the last two

digits of the block # to match library ID.

2. Using a material ID variable
– when the number of material regions in

the problem is large, the material input
block can become extremely long.

– the memory usage increases for large
numbers of blocks (> 100).

– assigns cross sections based on a
material ID variable written to the
mesh.
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Neutronics Materials - Constant

From INSTANT XML file

fromFile = 1
fileName = myXSfile.xml
[../]

[]

From direct input

sigma_t = ’1.0 2.0’
sigma_s = ’0.99 0.0

0.01 0.98’
nu_sigma_f = ’0.01 0.02’
chi = ’0.0 1.0’
diffusion_coef = ’1.0 2.0’
sigma_r = ’0.8 1.8’
sigma_f = ’0.01 0.02’
kappa_sigma_f = ’0.0001 0.0002’

neutron_speed = ’1e6 220000’
decay_constant = ’1.0 2.0’
delay_fraction = ’0.1 0.2’
delay_spectrum = ’0.0 1.0

0.1 1.0’
[../]
[]

• Can input cross sections by either:
– reading from a file
– direct input

• In direct input we specify the values of
the main cross sections: total,
scattering, nu fission, fission spectrum,
diffusion coefficients, removal, fission,
and kappa fission.

• Note that some of these can be
internally calculated - depending on
calculation type (diffusion vs transport).

• Other data like neutron speed and
delayed neutron data is also included
in the material specification.
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Neutronics Materials - CoupledFeedback

• CoupledFeedbackNeutronicsMaterials is used with parametric data
Σ(Burnup, fueltemp,modtemp, bor , ....).

• Tied to a BaseLibObject (userobject), which loads cross section data and
interacts with the material.

• The material will use the values of MOOSE variables (burnup, fuel
temperature) at each quadrature point to obtain an interpolated table.

• The MOOSE variables can either be primal or Aux, but order of execution
will be important for the latter

• The material will call a mixer to generate a set of macroscopic cross
sections.

• Requires the isotope names and number densities of initial isotopes. The
use of isotope ”pseudo” indicates it they are macro cross sections with
number density 1.0.
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Neutronics Materials - The use of material IDs

• Some specialized versions of the neutronics materials allow automatic
assignment of the material id based on either:

– last two digits of the block number
– the value of a material id variable in the mesh file

• This specialized neutronics materials use
the same naming convention but with
”MatID” inserted after the base name:

– ConstantMatIDNeutronicsMaterial
– MixedMatIDNeutronicsMaterial
– CoupledFeedbackMatIDNeutronicsMaterial

• If reading a material ID variable from the
mesh file make sure that the mesh
distribution is serial. Failure to do this
will:

– affect the automated assignment of cross
sections

– produce wrong answers
example with 1 block but
various material regions
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User Objects, Postprocessors,
AuxVariables and AuxKernels



Integrate a Variable over the Domain

• You have the scaled power density: total power density (p(~r , t)) and want
to compute total power P(t)

P(t) =

∫
V

dVp(r , t)

• Simple example of using ElementIntegralVariablePostprocessor

[./power]
type = ElementIntegralVariablePostprocessor
block = fuel1
# this is the scaled power density added by the DepletionAction in MAMMOTH (see AuxVariables section)
variable = total_power_density

[../]
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Subdomain Integrated Fluxes

• If you want the sum of fluxes integrated over a region (block) in space

FluxIntegral =

ge∑
g=gs

∫
V

dVφg

use the FluxIntegral postprocessor.
• Example computes flux integral of the sum of groups 1 and 2 over blocks

(regions) 0 and 1 and multiplies it by 1.2.
[./flux_integra]
type = FluxIntegral
coupled_flux_groups = ’phi_g0 phi_g1’
block = ’0 1’
scaling_factor = 1.2

[../]
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Subdomain Integrated Reaction Rates

• If you want the reaction rates integrated over a region in space and over a
sum of groups:

ReactionRate =
G∑

g=gs

∫
V

dV Σgφg

– FluxReactionIntegral: vector of scalar material properties (Σt ).
– FluxRxnIntegral: vector material property (νΣf ).

• Example computes the integral of the total reaction rate over groups 2 and
3 and block 1.
[./flux_reaction]

type = FluxReactionIntegral
coupled_flux_groups = ’phi_g1 phi_g2’
cross_section = ’sigma_total_g1 sigma_total_g2’
block = ’1’

[../]

• Example computes the integral of the fission neutron production over
groups 2 and 3 and block 1.
[./flux_rxn]

type = FluxRxnIntegral
coupled_flux_groups = ’phi_g1 phi_g2’
cross_section = nu_sigma_fission
initial_group = 2
block = ’1’

[../]
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Normalization Factor for Eigenvalue Calculations

• Flux obtained in eigenvalue calculations can be arbitrarily scaled
• Scaling factor is obtained by matching total reactor power
• If Depletion block is used the provided reactor power total reactor power is

correctly scaled
• Example of obtaining scaled power manually (assume two group diffusion):

[AuxVariables]
[./scaled_power]

order = CONSTANT
family = MONOMIAL

[../]
[]
[Postprocessors]
[./scale_pp]

type = PowerModulateFactor
power_pp = raw_power_pp
rated_power = 3000e6
execute_on = ’timestep_begin timestep_end’
power_modulating = PowerModulator

[../]
[./raw_power_pp]

type = FluxRxnIntegral
coupled_flux_groups = ’sflux_g0 sflux_g1’
cross_section = kappa_sigma_fission
# block needs to be set to wherever kappa_fission exists
# block = <where kappa fission exists>
# this is the correct setting for depletion; always true?
execute_on = ’timestep_begin timestep_end’

[../]
[]
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Normalization Factor for Eigenvalue Calculations

[Functions]
# sets power modulating to 1 so integral(power) = rated_power
[./PowerModulator]

type = PiecewiseLinear
x = ’0.0 10000’
y = ’1.0 1.0’

[../]
[]
[AuxKernels]
[./scaled_power_aux]

type = VectorReactionRate
variable = scaled_power
scalar_flux = ’sflux_g0 sflux_g1’
# name of the fission heat production cross section
nusigf = kappa_sigma_fission
# block needs to be set to wherever kappa_fission exists
# block = <where kappa fission exists>
scale_factor = scale_pp
dummy = raw_power_pp
# this is the correct setting for depletion; always true?
execute_on = ’timestep_begin timestep_end’

[../]
[]

• Another example for obtaining scaled fast flux can be found in AuxVariable
section

• Scaling in MAMMOTH is tricky because the user can run into cyclic
dependencies
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Obtaining Reaction Rates and Fluxes Everywhere

• Use UserObjects VariableCartesianCoreMap and FluxCartesianCoreMap
• VariableCartesianCoreMap: Evaluates integrated values of variables on

blocks, materials, regions, assemblies, pins, and pin rings/sectors
• FluxCartesianCoreMap: Interacts with the TransportSystem to compute the

following reaction rates: fission neutron production, power density, neutron
absorbtion, total fluxes, group fluxes

• Can output to dedicated file and/or screen
• Assemblies, pins, and pin rings/sectors can be inferred in two different

ways:
– Define a regular Cartesian grid using input options of UserObject
– Load variable id values from the mesh file into elemental AuxVariables. (NOTE:

variable names are fixed, see manual)
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FluxCartesianCoreMap - Example
• Using a cartesian mesh

[./flux_map]
type = FluxCartesianCoreMap
# this is the name of the transport system (subblock under TransportSystem)
transport_system = diff
# the file name used for printing the output
output_in = flux
# in this case we use a regular grid
# always check the grid to make sure that mesh elements are not cut
regular_grid = true
grid_coord_x = ’0 15 30 45 60 75 90 105 120 135’
grid_coord_y = ’0 15 30 45 60 75 90 105 120 135’
execute_on = ’initial timestep_end’

[../]

• Using elemental variables (see manual for variable names)

[./flux_map]
type = FluxCartesianCoreMap
transport_system = saaf
# selects the quantities to be printed (multiple choices are permitted)
print = ’assembly pin’
# determines which cross section is used to evaluate power
power_map_from = kappa_sigma_f
execute_on = ’initial timestep_end’

[../]
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Auxiliary Variables in MAMMOTH

• Auxiliary Variables ≡ Variables that can be readily computed from other
quantities without nonlinear solve

• Auxiliary variables are computed by AuxKernels
• AuxKernels can use nonlinear variables, material properties,

postprocessors, etc.
• Example: reaction rates, burnup in macroscopic depletion, normalized

reactor power, decay heat, boron content, temperatures (in certain
models), scaled fast flux etc.
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Macroscopic Depletion & Decay Heat Auxiliary
Variables

• Macroscopic depletion solves eigenvalue problems at each time step
• Requires scaling of the power to get burnup and decay heat magnitude

right
• Depletion block automatically adds:

– Scaled power density: total power density
– Scaling factor (postprocessor): power scaling ≡ number to multiply computed

flux to get actual reactor flux
– Burnup: burnup (currently only one unit - select FIMA — MWD/kg — EFPD —

J/cm3 (default))
– NOTE: your library must be tabulated in the unit you select here
– This will soon be generalized

• DecayHeat block automatically adds:
– Delayed power density: decay heat power density
– Prompt power density: prompt power density
– Total reactor power density ≡ decay heat power density +

prompt power density
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Macroscopic Depletion & Decay Heat Actions - Example
[Depletion]
# you have to provide the name of the transport system, in this case [./diff]
transport_system = diff
family = MONOMIAL
order = CONSTANT
# you provide a modulating function for the power (0 <= mod <=1).
# power_modulator * rated_power = Reactor operating power
# shutdown mode is entered if this function’s value is zero
power_modulating_function = PowerModulator
# rated power in MW: 3000MW thermal for 50,000 fuel pins
rated_power = 0.06
# unit that burnup will be computed as, currently only one unit and one fuel type can be selected
burnup_unit = MWd/kg
# fuel volume in (mesh unit of length)ˆ3, e.g. cm ∼150 cmˆ3

fuel_volume = 150
# in kg / mˆ3
fuel_density = 10421.5
heavy_metal_isotopes = ’U234 U235 U236 U238’
weight_percentages = ’0.04 4.11 0.0 95.85’

[]
[DecayHeat]
fract_power_file = ’path/to/fp.xml’
decay_heat_blocks = ’1 2 3 4 5 6’
# total_power_density and burnup are added by depletion action
power_density_variable = total_power_density
burnup_variable = burnup
order = CONSTANT
family = MONOMIAL

[]

• Limitations: currently only one fuel type and one burnup unit can be
selected

• This limitation will be removed soon
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Setting Temperature: Constant and Adiabatic Model

• Setting temperature to a constant value (no aux kernel required):

[AuxVariables]
[./Tfuel]

order = CONSTANT
family = MONOMIAL
initial_condition = 566.0

[../]
[]

• Use the adiabatic model (local deposition of energy) for temperature

• d(cpρT )

dt = p(t)⇒ T (t) = 1
cpρ

t∫
0

dτp(τ)

[AuxKernels]
[./temperature_aux]

type = VariableTimeIntegrationAux
variable = Tfuel
variable_to_integrate = total_power_density
# Coeff = 1/(density-Cp), Units [=] K-cmˆ3/J
coefficient = 0.732
execute_on = timestep_end

# order of the time integration. 2 is default so it’s commented here
# order = 2

[../]
[]
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Setting Boron using a Time-dependent Function

• Boron concentration is often defined using a boron letdown curve
• Boron content is set using a piecewise linear function defined at times

t = 0, 50, 100 seconds
# variable definition
[AuxVariables]
[./Boron]

order = CONSTANT
family = MONOMIAL
initial_condition = 500.0

[../]
[]

# function definition
[Functions]
[./BoronContent]

type = PiecewiseLinear
x = ’0 50.0 100.0’
y = ’500.0 400.0 100.0 ’

[../]
[]

# AuxKernel definition
[AuxKernels]

[./SetBoronAux]
type = FunctionAux
variable = Boron
function = BoronContent

[../]
[]
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Extracting the Scaled Fast Flux for BISON

• BISON requires the fast flux for estimating radiation damage on
• NOTE: fast flux from eigenvalue calculation is not properly scaled!
• Depletion actions does not set up the properly scaled fast flux so you have

to use FluxNormalizationAux and do it yourself

# variable definition
[AuxVariables]
[./scaled_fast_flux]

# use the same shape function as the primal variable
[../]

[]

#
[AuxKernels]
[./scaled_fast_flux_aux]

type = FluxNormalizationAux
# this must be the correct name that the transport system assigns to scalar fluxes
# diffusion: sflux_g<> otherwise flux_moment_g<>_L0_M0
source_variable = sflux_g0
variable = scaled_fast_flux
# this postprocessor is added automatically if Depletion action is used
normalization = power_scaling
# execute this when BISON subapp is executed
execute_on = timestep_end

[../]
[]
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Cyclic Dependencies (Advanced)

• Users could run into the dependency issue:
– MOOSE provides several execute on options: initial, linear, nonlinear,

timestep begin, timestep end
– MOOSE provides (limited) dependency resolution capabilities
– MOOSE execution order for each execute on option:

PPs (PREAUX)→ AuxKernels→ PPs (POSTAUX)
– PPs are POSTAUX by default and only if AuxKernel depends on them, they

become PREAUX
• Illegal (cyclic) dependencies AuxKernel→ PP→ AuxKernel on the same

execute on
• Problematic dependency: PP1→ PP2→ AuxKernel, AuxKernel does not

know about PP1 and it remains in POSTAUX
• MOOSE does not currently check for this (will be added soon)! User must

ensure input is valid
• NOTE: The following dependency is correctly resolved:

PP→ AuxKernel→ P
• Ways to resolve the cyclic dependency:

– make them have different execute on
– try making AuxKernel also depend on PP1 in case PP1→ PP2→ AuxKernel

(see FissionSource.C)
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Executioners



Executioners - Overview

• List of available executioners or solvers:
– Steady: an executioner in MOOSE framework; for solving steady-state source

problem; preconditioned Jacobian-free Newton-Krylov (PJFNK) method
through PETSc.

– Transient: an executioner in MOOSE framework; for solving transient problem;
preconditioned Jacobian-free Newton-Krylov (PJFNK) method through PETSc
with various time integration schemes; Picard iteration for multiphysics can be
turned on at each time step.

– InversePowerMethod: an executioner in MOOSE framework; for solving the
generalized nonlinear eigenvalue problem; Jacobian-free Krylov method
wrapped with the inverse power iterations; Chebyshev acceleration for the
power iteration is available.

– NonlinearEigen: an executioner in MOOSE framework; for solving the
generalized nonlinear eigenvalue problem; preconditioned Jacobian-free
Newton-Krylov (PJFNK) method through PETSc; free inverse power iterations
can be activated to ensure the solution converges to the fundamental mode.

– Depletion: a MAMMOTH executioner; for depletion calculations.

• We will discuss NonlinearEigen.
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Parameters for NonlinearEigen

[Executioner]
[./NonlinearEigen]
bx_norm = (required)

# convergence control
source_abs_tol = 1e-06
source_rel_tol = 1e-50

# advanced
auto_initialization = 1
free_power_iterations = 4
k0 = 1
pfactor = 0.01
time = 0
output_after_power_iterations = 1

# normalization
normal_factor =
normalization =
output_before_normalization = 1
[../]

[]

• Name of the postprocessor for evaluating the |Bx|
for the eigenvalue

• Absolute tolerance on residual norm

• Relative tolerance on residual norm after free power
iterations

• True to ask the solver to set initial

• The number of free power iterations

• Initial guess of the eigenvalue

• The factor of linear residual norm to be reduced per
free power iteration or per nonlinear step

• System time

• True to output solution after free power iterations

• Normalize x to make |x| equal to this factor

• Name of the postprocessor for evaluating |x| for
normalization

• True to output a step before normalization

• It typically requires few free power iterations at the beginning to get a better initial guess for
converging to the fundamental mode.

• Transport system will automatically add the eigen postprocessor and link it to bx norm.
• Extra parameter can be added for tuning PETSc.

71 / 104



Coupling Physics



Physics Coupling - Definitions

• Strong coupling here refers to the implicit solve for all the unknowns without operator
splitting - 1 multiphysics matrix.

• Tight coupling refers to the split operator for different grouped physics with an
external iteration to resolve nonlinearities.

• Loose coupling refers to the split operator where a group of physics is lagged in time.
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Strong Coupling



Strong Coupling - Overview

• Currently the physical domain has to be shared and meshing has to match
for the implicit solve.

• Currently all physics must be resolved on the same time discretization.
• The Transport Systems will add all neutronics primal variables and kernels

automatically.
• Neutronics materials that allow coupling (interpolation of XS) must be

defined.
• The rest of the physics (e.g. thermal-fluids, thermo-mechanics, etc.) need

to be specified in the same input:
– Primal variables
– Primal kernels
– Materials defining the coefficients for the coupled physics
– Boundary conditions
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Strong Coupling - Exercise

Problem Statement:
• Quarter Fuel Pin with six neutron sub-regions in the

fuel pellet

• Temperature obtained in Fuel, Gap, and Clad

• Thermal conduction with heat generated from fission

• Dirichlet Temperature condition specified on the Clad
boundary (600K)

• Neutron flux obtained in Fuel, Gap, Clad and Water

• Neutron steady state eigenvalue problem

• Reflective Neutron flux condition specified top,
bottom, left and right side boundary
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Strong Coupling - Syntax

• Open file exercise sc 1.i
• Open mesh file to look at blocks and

sidesets
• Enter the following:

– Neutron eigenvalue problem
– Coarse energy groups - 2
– B.C. - Reflecting on sidesets ’1 2 3’
– Solver scheme - CFEM-Diffusion
– Spatial functional family - LAGRANGE
– Spatial functional order - FIRST

[TransportSystems]
particle =
equation_type =
G =
ReflectingBoundary =

[./diff]
scheme =
family =
order =

[../]
[]
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Strong Coupling - Syntax

• Add the primal variable TempFuel
– first order Lagrange family
– in all blocks 1-8
– with initial condition set to 800 K.

[Variables]
[./TempFuel]
family =
order =
block =
initial_condition =

[../]
[]

• Must add additional kernels:
– HeatConduction operating on TempFuel in

blocks 1-8
– CoupledForce operating on TempFuel in

blocks 1-8 coupled to the
ScaledPowerDensity

[Kernels]
[./diff]

type =
variable =
block =

[../]
[./sourceterm]

type =
variable =
v =
block =

[../]
[]
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Strong Coupling - Additional Syntax

• Material - Javinium
– is a HeatConductionMaterial
– depends on TempFuel
– has a thermal conductivity of 3.4 W/m/K
– in blocks 1-6

• Material - Javinium2
– is a HeatConductionMaterial
– depends on TempFuel
– has a thermal conductivity of 100.0 W/m/K
– in blocks 7-8

• About Javinium’s density
– constant density (use

GenericConstantMaterial)
– the property name is ’density’
– with a value of of 10900.0 kg/m3

– in blocks 7-8

[Materials]
[./Javinium]

type =
temp =
thermal_conductivity =
block =

[../]
[./Javinium2]

type =
temp =
thermal_conductivity =
block =

[../]
[./JaviniumDensity]

type =
prop_names =
prop_values =
block =

[../]
[]
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Strong Coupling - Additional Syntax

• The thermal system requires BCs on TempFuel
• place a NeumannBC on sidesets 1001 1002.
• place a DirichletBC on sideset 1003 with a

value of 600 K.

[BCs]
active = ’WaterEdgeTempBC

FuelEdgeTempBC’
[./FuelEdgeTempBC]

type =
variable =
boundary =
value =

[../]
[./WaterEdgeTempBC]

type =
variable =
boundary =
value =

[../]
[]
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Tight Coupling



Tight Coupling - Overview

• Tight coupling allows different physics systems to be solved for on different
domains and different meshes.

• Tight coupling allows for different time discretization to be applied to
different physics.

• Implies one master application and many sub applications (slaves).
• Currently, one must prepare one input file for the master and slaves.
• The master

– does not necessarily have to be the neutronics,
– contains the execution call of the sub-application via MOOSE’s Multi-App

system,
– contains the transfer of information to and from the slave,
– contains aux variables that store the solution information.

• The Transport Systems will add all neutronics primal variables and kernels
automatically.

• Neutronics materials that allow coupling (interpolation of XS) must be
defined.
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Tight Coupling - Problem Statement Neutronics

• Quarter Fuel Pin with six neutron
sub-regions in the fuel pellet

• Neutron flux obtained in Fuel, Gap,
Clad and Water

• Neutron steady state eigenvalue
problem

• Reflective Neutron flux condition
specified top, bottom, left and right
side boundary

• Here to leverage the Picard
iteration system we leverage the
Depletion executioner with two
timesteps.
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Tight Coupling - Problem Statement Thermal Mechanics

• Temperature obtained in Fuel and
Clad

• Fuel is allowed to undergo thermal
expansion

• Thermal conduction with heat
generated from fission

• Dirichlet Temperature condition
specified on the Clad boundary
(600K)

• Small heat capacity to minimize
impact of the temerpature time
derivative
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Tight Coupling - Syntax Neutronics File

• Add the primal variable TempFuel
– first order Lagrange family
– in all blocks 1-8
– with initial condition set to 900 K.
– values are obtained from the

multiapp transfer

[AuxVariables]
[./TempFuel]

family =
order =
block =
initial_condition =

[../]
[]

• Add call for multi-app with input file [MultiApps]
[./sub]

type = TransientMultiApp
app_type = MammothApp
positions = ’0.0 0.0 0.0’
input_files = exercise_tc_1_sub_solution.i

[../]
[]
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Tight Coupling - Syntax Neutronics and Fuel
Performance File

• Add call for multi-app transfers [Transfers]
[./tosub]

type = MultiAppInterpolationTransfer
direction = to_multiapp
multi_app = sub
source_variable = ScaledPowerDensity
variable = ScaledPowerDensity

[../]
[./fromsub]
type = MultiAppInterpolationTransfer
direction = from_multiapp
multi_app = sub
source_variable = TempFuel
variable = TempFuel

[../]
[]

• Fuel Performance: Add
auxvariables for multi-app transfers

[AuxVariables]
[./ScaldedPowerDensity]
[../]

[]
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Detailed Examples



Examples - Kobayashi Benchmark

• one-group source problem with void

• Cross sections and source strength:
S Σt Σs

Region (n · cm−3 · s−1) (cm−1) (cm−1)

1 1 0.1 0 0.05
2 0 10−4 0 0.5 × 10−4

3 0 0.1 0 0.05

• Reflective boundary conditions are used at the
boundary planes x = 0, y = 0 and z = 0, and
vacuum boundary conditions at all outer
boundaries

[Mesh]
type = CartesianMesh
dim = 3

dx = ’10 20 10 20’
dy = ’10 40 10 40’
dz = ’10 20 10 20’

ix = ’2 4 2 4’
iy = ’2 8 2 8’
iz = ’2 4 2 4’

subdomain_id = ’
1 3 3 3
2 3 3 3
2 2 2 3
3 3 2 3

3 3 3 3
3 3 3 3
3 3 2 3
3 3 3 3

3 3 3 3
3 3 3 3
3 3 2 3
3 3 2 3

3 3 3 3
3 3 3 3
3 3 3 3
3 3 3 3’

uniform_refine = 0
second_order = false

[]

[TransportSystems]
particle = common
equation_type = steady-state
G = 1
VolumetricSourceBlock = ’1’
VolumetricSource = ’1.0’
VacuumBoundary = ’right front top’
ReflectingBoundary = ’left back bottom’

[./saaf]
scheme = SAAF-CFEM-SN
AQtype = Level-Symmetric
AQorder = 8
order = FIRST
hide_angular_flux = true

[../]
[]
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Examples - Kobayashi Benchmark - continued

[Materials]
[./region13]
type = ConstantNeutronicsMaterial
block = ’1 3’
sigma_t = 0.1
sigma_s = 0.0

# sigma_s = 0.05
[../]
[./region2]
type = ConstantNeutronicsMaterial
block = 2
sigma_t = 0.0001
sigma_s = 0.0

# sigma_s = 5e-5
[../]

[]

[Postprocessors]
[./norm]
type = ElementL2Norm
variable = flux_moment_g0_L0_M0

[../]

[./3A01]
type = PointValue
variable = flux_moment_g0_L0_M0
point = ’5 5 5’

[../]
...

[]

[Executioner]
type = AMGUpdate
richardson_max_its = 10
richardson_abs_tol = 1e-8
debug = false
amg_tol = 1e-3
amg_abs_tol = 1e-9

# type = Steady
# petsc_options_iname = ’-pc_type -pc_hypre_type
# -ksp_gmres_restart’
# petsc_options_value = ’hypre boomeramg 10’
# l_max_its = 50
# nl_rel_tol = 1e-12
[]

[Outputs]
exodus = true
print_perf_log = true
[./csv]
type = CSV
file_base = kobayashi_out
align = true
precision = 6
execute_on = timestep_end

[../]
[]
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Examples - Kobayashi Benchmark Results

Scalar flux with ParaView
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Examples - C5G7-2D Benchmark

• benchmark on deterministic transport
calculations without spatial homogenization.

• two UOX and two MOX assemblies surrounded
by moderator.

• each assembly is made up of 17-by-17 grid of pin
cells with 264 fuel pins, 24 guide tubes and 1
centering fission chamber.

• seven-group are given for 7 different materials.

• three of seven groups are fast, i.e. no
upscattering; four are themal:

Group Upper Energy

1 20 MeV
2 1 MeV
3 500 keV
4 3 eV
5 0.625 MeV
6 0.1 MeV
7 0.02 MeV

• left and bottom are reflective; right and top are
vacuum.

Material assignment

Pin-cell geometry
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Examples - C5G7-2D Benchmark - Mesh Generation

• All sections are contained in Geometry.
• The Pins section describes all cylindrical

and rectangular pin cells.
• The Assemblies section describes the pin

arrangement of each assembly.
• The Core section describes the assembly

arrangement, boundary conditions and
homogenization level.

• The Controls section describes the control
parameters for mesh generation. 92 / 104



Examples - C5G7-2D Benchmark - Mesh Generation

Mesh08 (56.6)

Mesh32 (824.3)

Mesh16 (212.0)

Mesh64 (3370.1)

Reflector

• The previous XML
geometry file is processed
by the INSTANT mesh
generator by calling
Triangle to generate an
ExodusII mesh file.

• Fuel rods are approximated
with line segments while
volumes are preserved.

• We will use Mesh08.
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Examples - C5G7-2D Benchmark - Cross Section
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Examples - C5G7-2D Benchmark

• Set up the input for direct transport solve with SAAF-CFEM-SN.

L [Ψ] = S [Φ] +
1
k

F [Φ]

• Convert the direct transport solve for transport update for solving:

L
[
Ψ(n+1/2)

]
= S

[
Φ(n)

]
+

1
kn F

[
Φ(n)

]
• Set up the low order diffusion system and link it to the transport update.

A(Ψ(n+1/2))
[
Φ(n+1)

]
= S

[
Φ(n+1)

]
+

1
k

F
[
Φ(n+1)

]
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Examples - C5G7-2D Benchmark

• Generated with
Mesh32,
quadratic shape
functions, 4 polar
directions and 64
azimuthal
directions in each
octant.

• Axial asymmetry
of the fission rate
can be observed.

• MOX fuel pins
exhibit steeper
variation of the
fission rate.
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More Examples



TREAT PKE - Overview

• Fully implicit adiabatic heating and PKE
• Uses scalar variables and auxiliary variables
• Uses functions with auxiliary variables and primal variables
• Uses initial conditions and array of initial conditions (special for the PKE

set)
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TREAT Element - Overview

• 3-D TREAT fuel element with homogenized fuel, gap and clad, but with
explicit air channels

• Reflective B.C. on sides and Vacuum top and bottom
• CFEM diffusion solution in 11 energy groups
• Uses the transfer system to generate the I.C. form an eigenvalue

calculation
• Transient case via boron dilution
• Includes a fully implicit (strongly coupled) thermal field solution
• thermal properties provided with functions
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